Kecerdasan Buatan dan Big Data dalam Industri Manufaktur: Sebuah Tinjauan Sistematis
DOI:
https://doi.org/10.55732/nter.v1i1.1119Keywords:
Artificial intelligence, Industrial engineering, Industry, Big data, ManufactureAbstract
Peran Kecerdasan Buatan (AI) dan Big Data dalam produksi dan manufaktur semakin penting dan mendesak dalam industri dan bisnis. Penelitian ini bertujuan untuk mengidentifikasi kondisi saat ini, tren, tantangan, dan peluang yang muncul dari teknologi AI dan big data di industri manufaktur. Dengan menggunakan metodologi tinjauan pustaka yang sistematis, penelitian ini dengan cermat menganalisis artikel-artikel yang diterbitkan hingga tahun 2023. Temuan ini mengungkapkan bahwa AI dan Big Data sangat penting dalam meningkatkan efisiensi operasional, pemeliharaan prediktif, optimalisasi rantai pasokan, dan dukungan pelanggan. pendekatan produksi yang sentris. Tantangan seperti integrasi data, masalah kualitas, keamanan siber, dan pertimbangan etis dalam penerapan AI juga diidentifikasi. Tinjauan ini memberikan kontribusi dengan menawarkan gambaran komprehensif mengenai kemajuan terkini dan bidang-bidang penelitian di masa depan, menekankan peran AI dan Big Data yang terus berkembang dalam proses manufaktur modern.
The role of Artificial Intelligence (AI) and Big Data in production and manufacturing is increasingly important and urgent in industry and business. This research aims to identify current conditions, trends, challenges and opportunities emerging from AI technology and big data in the manufacturing industry. Using a systematic literature review methodology, this research carefully analyzes articles published through 2023. The findings reveal that AI and Big Data are critical in improving operational efficiency, predictive maintenance, supply chain optimization, and customer support. production centric approach. Challenges such as data integration, quality issues, cybersecurity, and ethical considerations in AI implementation are also identified. This review contributes to the field by offering a comprehensive overview of recent advances and future areas of research, emphasizing the growing role of AI and Big Data in modern manufacturing processes.
References
Al Jahdaly, B. A. et al. (2022) ‘Role of green chemistry in sustainable corrosion inhibition: a review on recent developments’, Materials Today Sustainability, 20, p. 100242. doi: 10.1016/j.mtsust.2022.100242.
Aldboush, H. H. H. and Ferdous, M. (2023) ‘Building Trust in Fintech: An Analysis of Ethical and Privacy Considerations in the Intersection of Big Data, AI, and Customer Trust’, International Journal of Financial Studies, 11(3), p. 90. doi: 10.3390/ijfs11030090.
Anthopoulos, L. and Kazantzi, V. (2022) ‘Urban energy efficiency assessment models from an AI and big data perspective: Tools for policy makers’, Sustainable Cities and Society, 76, p. 103492. doi: 10.1016/j.scs.2021.103492.
Azizah, Z. and Dhaniswara, T. K. (2021) ‘Integrasi Aspen Plus Dynamics dengan Matlab Simulink (Studi Kasus: Simulasi Proses Distilasi Propana-Isobutana)’, Journal of Chemical Process Engineering, 6(2), pp. 113–117. doi: 10.33536/jcpe.v6i2.989.
Azmi, A. and Lamkuche, H. (2022) ‘Use of big data and AI in supply chain management’, in AIP Conference Proceedings, p. 030034. doi: 10.1063/5.0110780.
Barnes, S. and Rutter, R. (2019) ‘Using Big Data and AI to Examine Product Engagement in Social Media Influencer Posts’, in 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE). IEEE, pp. 35–39. doi: 10.1109/ICITISEE48480.2019.9003991.
Bibri, S. E. et al. (2023) ‘Environmentally sustainable smart cities and their converging AI, IoT, and big data technologies and solutions: an integrated approach to an extensive literature review’, Energy Informatics, 6(1), p. 9. doi: 10.1186/s42162-023-00259-2.
Chen, C. (2023) ‘Influence of Employees’ Intention to Adopt AI Applications and Big Data Analytical Capability on Operational Performance in the High-Tech Firms’, Journal of the Knowledge Economy. doi: 10.1007/s13132-023-01293-x.
D’Arco, M. et al. (2019) ‘Embracing AI and Big Data in customer journey mapping: from literature review to a theoretical framework’, Innovative Marketing, 15(4), pp. 102–115. doi: 10.21511/im.15(4).2019.09.
Dhaniswara, T. K. et al. (2022) ‘The Effect of Pre-treatment of Water Hyacinth (Eichhornia crassipes) and the Use of Cow Dung on Biogas Production’, IOP Conference Series: Earth and Environmental Science, 1097(1), p. 012068. doi: 10.1088/1755-1315/1097/1/012068.
Fahlevi, M. et al. (2023) ‘Corporate Governance in the Digital Age: A Comprehensive Review of Blockchain, AI, and Big Data Impacts, Opportunities, and Challenges’, E3S Web of Conferences. Edited by R. Isnanto, Hadiyanto, and B. Warsito, 448, p. 02056. doi: 10.1051/e3sconf/202344802056.
Farahdiba, A. U. et al. (2023) ‘The present and proposed sustainable food waste treatment technology in Indonesia: A review’, Environmental Technology & Innovation, 32, p. 103256. doi: 10.1016/j.eti.2023.103256.
Fitrianah, L. et al. (2022) ‘Distribution Mapping of Cadmium on Water and Soil in Rice Fields Around The Industrial Area of Sidoarjo Regency’, in IOP Conference Series: Earth and Environmental Science, p. 012015. doi: 10.1088/1755-1315/1030/1/012015.
Fitrianah, L., Purnama, A. R. and Asror, M. (2019) ‘Pelatihan Pemanfaatan Media Online sebagai Sarana Pemasaran Pengrajin Sablon di Desa Pogar Kecamatan Bangil Kabupaten Pasuruan’, in e-Prosiding SNasTekS. Sidoarjo: Universitas Nahdlatul Ulama Sidoarjo. Available at: https://journal.unusida.ac.id/index.php/snts/article/view/111.
Fu, W. (2023) ‘AI-News Personalization System Combining Complete Content Characterization and Full Term Interest Portrayal in the Big Data Era’, IEEE Access, 11, pp. 85086–85096. doi: 10.1109/ACCESS.2023.3303479.
Hakim, L. et al. (2023) ‘Analysis of Physiological Workload in Tofu Production Process Based on Energy Recovery at Rest’, Journal of Research and Technology, 9(1). Available at: https://journal.unusida.ac.id/index.php/jrt/article/view/967.
Ibrahim, M. et al. (2023) ‘Integrasi Kecerdasan Buatan dalam Desain Aplikasi Seluler: Peningkatkan Pengalaman Pengguna di Era Ekonomi Digital’, Nusantara Computer and Design Review, 1(1), pp. 31–39. Available at: https://journal.unusida.ac.id/index.php/ncdr/article/view/1091.
Irawan, M. C. S. et al. (2023) ‘Global Patent Landscape of Decision Support System in The Business: An Overview’, in 2023 International Conference on Information Management and Technology (ICIMTech). IEEE, pp. 464–469. doi: 10.1109/ICIMTech59029.2023.10277829.
Kalleya, C. et al. (2023) ‘Agricultural marketing research: A retrospective of domain and knowledge structure’, E3S Web of Conferences. Edited by T. N. Mursitama et al., 426, p. 01071. doi: 10.1051/e3sconf/202342601071.
Li, G. et al. (2022) ‘Big data-oriented wheel position and geometry calculation for cutting tool groove manufacturing based on AI algorithms’, The International Journal of Advanced Manufacturing Technology, 119(9–10), pp. 6717–6728. doi: 10.1007/s00170-022-08749-5.
Liu, L. (2023) ‘AI and big data-driven decision support for fostering student innovation in music education at private underground colleges’, Journal of Information Systems Engineering and Management, 8(2), p. 23646. doi: 10.55267/iadt.07.13840.
Madyatmadja, E. D. et al. (2021) ‘Big Data For Smart City: An Advance Analytical Review’, in 2021 1st International Conference on Computer Science and Artificial Intelligence (ICCSAI). IEEE, pp. 307–312. doi: 10.1109/ICCSAI53272.2021.9609728.
Mantri, A. and Mishra, R. (2023) ‘Empowering small businesses with the force of big data analytics and AI: A technological integration for enhanced business management’, The Journal of High Technology Management Research, 34(2), p. 100476. doi: 10.1016/j.hitech.2023.100476.
Maulana, F. I. et al. (2022) ‘Scientometric Analysis in the Field of Big Data and Artificial Intelligence in Industry’, in 2022 1st International Conference on Information System & Information Technology (ICISIT). IEEE, pp. 255–260. doi: 10.1109/ICISIT54091.2022.9872659.
Naser, M. A. and Zaman, M. (2023) ‘Artificial Intelligence (AI) and Big Data: Impediments to Fraud in Social Entrepreneurship Using Participative Social Governance’, in Accounting, Finance, Sustainability, Governance and Fraud, pp. 127–135. doi: 10.1007/978-981-16-9499-8_7.
Nathaniela, T. C. et al. (2023) ‘Manage Waste organic with Bioconversion Black Soldier Fly on Business Mega Maggot’, E3S Web of Conferences. Edited by Widodo et al., 444, p. 04036. doi: 10.1051/e3sconf/202344404036.
Novie, M. et al. (2021) ‘Optimization of Speed Innovation on the Influence of Customer Orientation on Market Performance’, SENTRALISASI, 10(2), p. 83. doi: 10.33506/sl.v10i2.1307.
Novitasari, D. and Kurniawati, R. (2023) ‘Optimalisasi Pengalaman Belajar Siswa SD melalui Media Pembelajaran Interaktif Berbasis Web’, Nusantara Educational Review, 1(1). doi: https://doi.org/10.55732/ner.v1i1.1006.
Pan, C.-L. et al. (2020) ‘Accounting, Auditing, Accountability: Key Insights from a Multidisciplinary Review of AI and Big Data Literature’, IOP Conference Series: Materials Science and Engineering, 806(1), p. 012018. doi: 10.1088/1757-899X/806/1/012018.
Pandey, S. et al. (2023) ‘Subsuming AI, IoT and Big Data in Smart Farm Practices’, in 2023 IEEE Devices for Integrated Circuit (DevIC). IEEE, pp. 229–232. doi: 10.1109/DevIC57758.2023.10134816.
Pangestu, G. et al. (2021) ‘Head Movement Detection using Deep Learning and Face Edge Detection (FED) Method’, in 6th International Conference on Sustainable Information Engineering and Technology 2021. New York, NY, USA: ACM, pp. 315–320. doi: 10.1145/3479645.3479663.
Park, J. and Bae, H. (2022) ‘Big Data and AI for Process Innovation in the Industry 4.0 Era’, Applied Sciences, 12(13), p. 6346. doi: 10.3390/app12136346.
Pejić Bach, M., Ivec, A. and Hrman, D. (2023) ‘Industrial Informatics: Emerging Trends and Applications in the Era of Big Data and AI’, Electronics, 12(10), p. 2238. doi: 10.3390/electronics12102238.
Plantec, Q. et al. (2023) ‘Big data as an exploration trigger or problem-solving patch: Design and integration of AI-embedded systems in the automotive industry’, Technovation, 124, p. 102763. doi: 10.1016/j.technovation.2023.102763.
Prastyawati, E. E. and Novie, M. (2023) ‘Implementasi Total Quality Management: Dampak terhadap Kepuasan Kerja dan Kinerja Karyawan di PT Tiga Permata Ekspres’, Nusantara Entrepreneurship and Management Review, 1(1), pp. 47–56. Available at: https://journal.unusida.ac.id/index.php/nemr/article/view/1045.
Putri, O. I. N. et al. (2023) ‘Simpang Education sebagai Sarana Peningkatan Mutu Pendidikan bagi Siswa Madrasah Ibtidaiyah Darul Ulum Sidoarjo’, Nusantara Community Empowerment Review, 1(1). doi: 10.55732/ncer.v1i1.746.
Putri, S. I. E. et al. (2023) ‘Artificial Intelligence in the Entrepreneurship: Patent Landscape Analysis’, in 2023 International Conference on Inventive Computation Technologies (ICICT). Lalitpur: IEEE, pp. 441–447. doi: 10.1109/ICICT57646.2023.10134114.
Rahmayanti, A. et al. (2022) ‘Synthesis and Effectiveness of Snake Fruit (Salacca zalacca) Seed Charcoal Bio-Adsorbent in Reducing Remazol Brilliant Blue’, in IOP Conference Series: Earth and Environmental Science, p. 012016. doi: 10.1088/1755-1315/1030/1/012016.
Raj, B. et al. (2023) AI for Big Data-Based Engineering Applications from Security Perspectives. Boca Raton: CRC Press. doi: 10.1201/9781003230113.
Rathore, M. M. et al. (2021) ‘The Role of AI, Machine Learning, and Big Data in Digital Twinning: A Systematic Literature Review, Challenges, and Opportunities’, IEEE Access, 9, pp. 32030–32052. doi: 10.1109/ACCESS.2021.3060863.
Savzikhanova, S. E. et al. (2023) ‘Quality of Life in the Big Data and AI Economy: Modern Experience and Future Perspectives’, in Advances in Science, Technology and Innovation, pp. 405–409. doi: 10.1007/978-3-031-29364-1_81.
Siripurapu, S. et al. (2023) ‘Technological Advancements and Elucidation Gadgets for Healthcare Applications: An Exhaustive Methodological Review-Part-I (AI, Big Data, Block Chain, Open-Source Technologies, and Cloud Computing)’, Electronics, 12(3), p. 750. doi: 10.3390/electronics12030750.
Tamasiga, P. et al. (2023) ‘Forecasting disruptions in global food value chains to tackle food insecurity: The role of AI and big data analytics – A bibliometric and scientometric analysis’, Journal of Agriculture and Food Research, 14, p. 100819. doi: 10.1016/j.jafr.2023.100819.
Usada, U. et al. (2023) ‘Pelatihan Pemasaran Modern dan Inovasi Produk Kerajinan Bordir Berbasis Konsumen di Tanggulangin Sidoarjo’, Journal of Science and Social Development, 6(1). Available at: https://journal.unusida.ac.id/index.php/jssd/article/view/959.
Vodenko, K. V. et al. (2022) ‘Modelling of Conflict in the Labour Market Under the Conditions of Automatization Based on Robots, Big Data and AI: The Specifics of Technological Inequality of Countries and Conflict Management’, in Contributions to Conflict Management, Peace Economics and Development, pp. 121–131. doi: 10.1108/S1572-832320220000030011.
Wulandari, R. S. and Umam, M. K. (2020) ‘Analisis Postur Kerja pada UKM Kerupuk dengan Metode Rapid Upper Limb Assessment’, Tekmapro: Journal of Industrial Engineering and Management, 15(2).
Xiong, X. (2022) ‘Development of AI Intelligent Decision-Making System for Engineering Project Investment Cost Control based on Big Data Information Collection Algorithm’, in 2022 International Conference on Edge Computing and Applications (ICECAA). IEEE, pp. 172–175. doi: 10.1109/ICECAA55415.2022.9936347.
Xu, H. (2023) ‘The Application of Interactive Visualization and Computer Vision in Intelligent Education Based on Big Data AI Technology’, Wireless Communications and Mobile Computing. Edited by H. G. Rosales, 2023, pp. 1–8. doi: 10.1155/2023/2119198.
Xu, M. et al. (2023) ‘Managerial Information Processing in the Era of Big Data and AI – A Conceptual Framework from an Evolutionary Review’, in Lecture Notes in Networks and Systems, pp. 611–621. doi: 10.1007/978-3-031-33258-6_55.
Yafi, M. mansur (2023) ‘Analisis Postur Kerja Operator Inbound dengan Menggunakan Metode Rula’, JUSTI (Jurnal Sistem dan Teknik Industri), 3(2), p. 237. doi: 10.30587/justicb.v3i2.5243.
Yang, F. X. et al. (2022) ‘The beauty premium of tour guides in the customer decision-making process: An AI-based big data analysis’, Tourism Management, 93, p. 104575. doi: 10.1016/j.tourman.2022.104575.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nusantara Technology and Engineering Review
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.