Efektifitas Tanaman Mangrove Rhyzopora Mucronata dan Bakteri dalam Menurunkan Kadar Salinitas Air Payau

Penulis

  • Layyinatul Khoiriyah Universitas Nahdlatul Ulama Sidoarjo
  • Atik Widiyanti Universitas Nahdlatul Ulama Sidoarjo

DOI:

https://doi.org/10.55732/nter.v1i1.1068

Kata Kunci:

Bacillus mycoides , Biodesalinasi, Pseudomonas aeruginosa, Rhyzopora mucronata, Teknik Lingkungan

Abstrak

Peningkatan tinggi permukaan laut dapat mengakibatkan intrusi air laut yang berpotensi mencemari kualitas air tanahPencemaran air tanah yang disebutkan terjadi melalui merembesnya air laut yang mengandung kadar klorida (Cl), yang dapat menyebabkan kerusakan pada ekuifer air tawar. Tujuan dilakukan penelitian ini adalah pemanfaatan teknologi biodesalinasi sebagai teknologi yang meyediakan air tawar yang dibantu oleh tanaman mangrove Rhyzopora mucronata dan bakteri (Bacillus mycoides dan Pseudomunas aeruginosa). Penelitian ini dilakukan menggunakan metode eksperimental. Penelitian ini menggunakan 4 reaktor, P0 reaktor kontrol, Reaktor P1 diberi tanaman mangrove (Rhyzopora mucronata) Reaktor P2 diberi tanaman mangrove (Rhyzopora mucronata) dan bakteri (Bacillus mycoides dan Pseudomunas aeroginosa). Reaktor P3 ditambahkan bakteri (Bacillus mycoides dan Pseudomunas aeroginosa). Volume air payau yang digunakan pada tiap reaktor adalah 13 L dan penambahan bakteri 300 ml, pengambilan sampel sebanyak 5 ml dengan 3 kali pengulangan. Hasil analisi setiap reaktor mengalami penurunan. Nilai efesiensi terbesar pada reaktor P2 sebesar 26% dan nilai efektifitas terbesar pada reaktor P2 sebesar 17,81 ⁰/₀₀. Reaktor terbaik dalam menurunkan kadar salinitas air payau adalah reaktor P2.

An increase in sea level height can result in seawater intrusion, which has the potential to pollute groundwater quality. The mentioned groundwater pollution occurs through seepage of seawater containing high levels of chloride (Cl), which can cause damage to freshwater aquifers. This research aims to utilize desalination technology as a technology that provides fresh water assisted by the mangrove plant Rhyzopora mucronata and bacteria (Bacillus mycoides and Pseudomonas aeruginosa). This research was conducted using experimental methods. This research used four reactors: P0 was the control reactor, Reactor P1 was given mangrove plants (Rhyzopora mucronata), Reactor P2 was given mangrove plants (Rhyzopora mucronata) and bacteria (Bacillus mycoides and Pseudomunas aeroginosa). The P3 reactor added bacteria (Bacillus mycoides and Pseudomunas aeroginosa). The volume of brackish water used in each reactor was 13 L, and 300 ml of bacteria were added, 5 ml of samples were taken with three repetitions. The analysis results for each reactor decreased. The most significant efficiency value in the P2 reactor was 26%, and the most considerable effectiveness value in the P2 reactor was 17.81 ⁰/₀₀. The best reactor for reducing the salinity levels of salty water is the P2 reactor.

Referensi

Abidin, N. A. Z. (2013). Basic Study of Chemical Constituents in Rhizophora Species. The Open Conference Proceedings Journal, 4(1), 27–28. https://doi.org/10.2174/2210289201304020027

Bakti, L. M. (2010). Kajian Sebaran Potensi ROB Kota Semarang dan Usulan Penangananya. Universitas Diponegoro.

Chimayati, R. (2019). Removal of Salinity using Interaction Mangrove Plants and Bacteria in Batch Reed Bed System Reactor. Journal of Ecological Engineering, 20(4), 84–93. https://doi.org/10.12911/22998993/102792

Dwijoseputro, D. (1990). Pengantar Fisiologi Tumbuhan. Gramedia Pustaka Utama.

Ebi, K. L., & Hess, J. J. (2020). Health Risks Due to Climate Change: Inequity in Causes and Consequences. Health Affairs, 39(12), 2056–2062. https://doi.org/10.1377/hlthaff.2020.01125

Glick, B. R. (1995). The Enhancement of Plant Growth by Free-Living Bacteria. Canadian Journal of Microbiology, 41(2), 109–117. https://doi.org/10.1139/m95-015

Husen, E., Salma, S., & Husnain, H. (2020). Bakteri Pengendali Cekaman Salinitas yang Menjanjikan untuk Peningkatan Produksi Padi Sawah Kawasan Pesisir. Jurnal Tanah Dan Iklim, 44(2).

Jacobson, C. B., Pasternak, J. J., & Glick, B. R. (1994). Partial Purification and Characterization of 1-Aminocyclopropane-1-Carboxylate Deaminase from The Plant Growth Promoting Rhizobacterium Pseudomonas Putida GR12-2. Canadian Journal of Microbiology, 40(12), 1019–1025. https://doi.org/10.1139/m94-162

Kurwadkar, S., Kanel, S. R., & Nakarmi, A. (2020). Groundwater Pollution: Occurrence, Detection, and Remediation of Organic and Inorganic Pollutants. Water Environment Research, 92(10), 1659–1668. https://doi.org/10.1002/wer.1415

Liu, Z. (2014). The Groundwater Pollution and Environmental Protection in China. BioTechnology: An Indian Journal, 10(24).

Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant Growth-Promoting Bacteria that Confer Resistance to Water Stress in Tomatoes and Peppers. Plant Science, 166(2), 525–530. https://doi.org/10.1016/j.plantsci.2003.10.025

Nadeem, S. M., Zahir, Z. A., Naveed, M., & Arshad, M. (2009). Rhizobacteria Containing ACC-Deaminase Confer Salt Tolerance in Maize Grown on Salt-Affected Fields. Canadian Journal of Microbiology, 55(11), 1302–1309. https://doi.org/10.1139/W09-092

Nicholls, R. J. (2002). Analysis of Global Impacts of Sea-Level Rise: A Case Study of Flooding. Physics and Chemistry of the Earth, Parts A/B/C, 27(32–34), 1455–1466. https://doi.org/10.1016/S1474-7065(02)00090-6

Purnomo, A., Firdaus, M., Widiyanti, A., Choifin, M., & Maghfiroh, L. (2021, March 7). Green Business Publication: Insights from Scientometric Analysis 1990-2019. Proceedings of the International Conference on Industrial Engineering and Operations Management. https://doi.org/10.46254/AN11.20210341

Salisbury, F. B., & Ross, C. W. (1995). Fisiologi Tumbuhan. Penerbit ITB.

Saravanakumar, D., & Samiyappan, R. (2007). ACC Deaminase from Pseudomonas Fluorescens Mediated Saline Resistance in Groundnut (Arachis Hypogea) Plants. Journal of Applied Microbiology, 102(5), 1283–1292. https://doi.org/10.1111/j.1365-2672.2006.03179.x

Scholander, P. F., Hammel, H. T., Hemmingsen, E., & Garey, W. (1962). Salt Balance in Mangroves. Plant Physiology, 37(6), 722–729. https://doi.org/10.1104/pp.37.6.722

Suhartono, E., & Suripin, D. (2013). Kondisi Intrusi Air Laut Terhadap Air Tanah Pada Ekuifer di Kota Semarang. Prosiding Seminar Nasional Pengelolaan Sumberdaya Alam Dan Lingkungan.

Teke, S., Dewi, W. O. N. T., Jali, W., & Yumnawati. (2021). Pembuatan dan Karakterisasi Arang Aktif Ijuk Pohon Aren (Arenga Pinnata) sebagai Media Filtrasi Desalinasi Air Payau. Berkala Fisika, 24(1), 10–21.

Titah, H. S., Purwanti, I. F., Pratikno, H., Chimayati, R. L., & Handayanu, H. (2019). Preliminary Phytotoxicity Test on Salinity Against Mangrove Plants of Rhizophora mucronata. Journal of Ecological Engineering, 20(3), 126–134. https://doi.org/10.12911/22998993/99741

Tomlinson, P. B. (1986). The Botany of Mangroves. Cambridge University Press.

Zahir, Z. A., Ghani, U., Naveed, M., Nadeem, S. M., & Asghar, H. N. (2009). Comparative Effectiveness of Pseudomonas and Serratia sp. Containing ACC-Deaminase for Improving Growth and Yield of Wheat (Triticum Aestivum L.) under Salt-Stressed Conditions. Archives of Microbiology, 191(5), 415–424. https://doi.org/10.1007/s00203-009-0466-y

Diterbitkan

2023-11-27

Cara Mengutip

Khoiriyah, L., & Widiyanti, A. . (2023). Efektifitas Tanaman Mangrove Rhyzopora Mucronata dan Bakteri dalam Menurunkan Kadar Salinitas Air Payau. Nusantara Technology and Engineering Review, 1(1), 1–9. https://doi.org/10.55732/nter.v1i1.1068